Week 12 Calculus I Outline of Notes

by S. Gramlich

(updated 12/11/06)

 

I)          Chapter 5:  Finding Areas Under the Curve with curved sides

            5.1 & 5.2:   Using Riemann Sums on continuous f(x) on interval [a,b] with n subintervals

        A = lim (n->∞)  i=1n f(x) Δx = Δx [f(x1) + f(x2) + ... + f(xn)]

                                where A=Area, f(x)= height/length, Δx = (b-a)/n =base/width

        p. 375, can sum rectangles where the estimate of A uses:

                                p. 370, Fig 4b, Rn=Right Endpoints coincide with curve (use xi), start @ a + Δx

                                p. 370, Fig 5, Ln=Left Endpoints coincide with curve (use xi-1), start @ a = x0

                                p. 374, Fig 13, Sample Points (in middle somewhere) that coincide with curve (xi*)

                                p. 386, Fig 11, Mn=Midpoints coincide with curve (use ˜i), start @ (a+ (a+Δx))/2

                                                            where ˜i = (xi-1 + xi)/2 = midpoint of [xi-1, xi]

                                Note:  The more rectangles, the better the approximation of A

        5.2, p. 383, Properties of Summation (7-10)

                                p. 370, 5.1 Example 1 (using Right, Left, Mid)

 

II)        5.2       Definition of Definate Integral

                        ab f(x) dx = lim (n->∞)  i=1n f(xi*) Δx

                        where ∫= "integral," a= "upper limit", b= "lower limit", f(x)= "integrand"

                        5.2, p. 391, #20

                        pp. 387-389, Properties of Definate Integral

                        5.2, p. 392, #48

III)       5.3       THE FUNDAMENTAL THEREOM OF CALCULUS (FTC)

                        Part 1 (FTC1)

                        if f continuous on [a,b] then

                        g(x) = ax f(t) dt

                        so g'(x) = lim (h->0) [g(x+h) - g(x)]/h = f(x),

f is the derivative of g or g is the antiderivative of f

                        * make sure upper limit is x, if not change it using a substitution

                        5.3, p. 398, Example 4

 

                        Part 2 (FTC2)

if f continuous on [a,b] then

                        ab f(x) dx = F(b) - F(a) = F(x)]ab

where F is any antiderivative of f

                        5.3, p. 400, Example 6

                        * Beware of discontinuities on the interval and negative answers for Area

                        5.3, p. 401, Example 9